Araştırma ve ödevleriniz için her türlü kaynağı ve dokümanı En Geniş Araştırma ve Ödev Sitesi: www.arsivbelge.com ile bulabilir ve İsterseniz siz de kendi belge ve çalışmalarınızı gönderebilirsiniz!
Her türlü ödev ve dokümanı
www.arsivbelge.com ile kolayca bulabilirsiniz!


Araştırmalarınız için Arama Yapın:


Super Oyunlar Oyna




  
Kumanda Devresi Elemanları

                    

www.arsivbelge.com
Kumanda Devresi Elemanları dokümanıyla ilgili bilgi için yazıyı inceleyebilirsiniz. Binlerce kaynak ve araştırmanın yer aldığı www.arsivbelge.com sitemizden ücretsiz yararlanabilirsiniz.
Kumanda Devresi Elemanları başlıklı doküman hakkında bilgi yazının devamında...
Ödev ve Araştırmalarınız için binlerce dokümanı www.arsivbelge.com sitesinde kolayca bulabilirsiniz.

KUMANDA ELEMANLARI

1.1 GENEL BİLGİLER

Elektrik makinalarının ve elektrikli aygıtların çalıştırılmalarında kullanılan elemanlara kumanda elemanları denilir. Kumanda elemanları, sıklıkla kumanda devrelerinde kullanılırlar. Bu elemanları tanımak ve işlevlerini bilmek, devrelerin öğrenilmesi için bir ön adım olarak düşünülmelidir. Bu sayede karmaşık devrelerin işleyişlerinin çözümünün daha kolay anlaşılabilmesine olanak sağlanır.

Bu bölümde anlatılan temel kumanda elemanları şunlardır;

§  Butonlar

§  Anahtarlar

§  Lambalar

§  Sınır Anahtarları

§  Röleler

§  Kontaktörler

§  Aşırı Akım Röleleri

§  Zaman Röleleri

§  Valfler

§  Termostatlar

§  Paket şalterler

1.2 BUTONLAR

Elektrik akımının geçip geçmemesini, yön değiştirmesini sağlayan elemanlardır. Bu elemanların kontaklarından akım geçer. Normalde açık kontaklı bir anahtardan akım geçmez. Butona basarak kontak kapandığında akım geçebilir. Normalde kapalı kontaklı bir elemandan akım geçer. Butona basarak kontak açıldığında akım geçişi durur.

1.2.1 Yapılarına Göre Butonlar

1.2.1.1 Normalde Açık Kontaklı Buton

Bu elemana kısaca başlatma (start) butonu adı verilebilir. Butona basıldığında kontak kapanarak devre tamamlanır. Buton serbest bırakıldığında ise kontak tekrar eski konumuna döner.

 

Şekil 1.1 Başlatma butonu simgesi

 

Şekil 1.2 Başlatma butonu

 

Şekil 1.3 Başlatma butonunun devrede gösterimi

1.2.1.2 Normalde Kapalı Kontaklı Buton

Bu elemana kısaca durdurma (stop) butonu adı verilebilir. Butona basıldığında kontak açılarak devre akımı kesilir. Buton serbest bırakıldığında tekrar eski konumuna döner.

 

Şekil 1.4 Durdurma butonu simgesi

 

Şekil 1.5 Durdurma butonu

 

Şekil 1.6 Durdurma butonunun devrede gösterimi

Biri normalde kapalı, diğeri normalde açık iki adet kontağa sahip olan butondur. Butona kuvvet uygulandığında kontaklar yer değiştirir. Bir işleme son verirken,diğer bir işlemi başlatmak istenen yerlerde kullanılır.

1.2.1.3 Çift Yollu Buton

Biri normalde kapalı, diğeri normalde açık iki adet kontağa sahip olan butondur. Butona kuvvet uygulandığında kontaklar yer değiştirir. Bir işleme son verirken,diğer bir işlemi başlatmak istenen yerlerde kullanılır.

 

Şekil 1.7 Çift Yollu buton simgesi

 

Şekil 1.8 Çift yollu buton

 

Şekil 1.9 Çift yollu butonun devrede gösterimi

1.2.1.4 Ortak Uçlu Buton (Jog Buton)

Butonun normal konumunda 1-2 bağlantılarından akım geçmektedir. Butona kuvvet uygulandığında devre 1-4 bağlantıları üzerinden tamamlanır. Buton serbest bırakıldığında normal konumuna döner. Çift yollu butondan farkı, 1 numaralı ucun ortak olmasıdır.

 

Şekil 1.10 Jog buton simgesi

 

Şekil 1.11 Jog butonu

 

Şekil 1.12 Jog butonunun devrede gösterimi

1.2.2 Çalışma Şekillerine Göre Butonlar

1.2.2.1 Kalıcı Buton (Anahtar)

Kalıcı butona basıldığında, buton durumunu değiştirir. Kalıcı buton serbest bırakıldığında, normal konumuna dönmez. Yani basıldığı şekilde kalır. Başka bir kumanda elemanı kalıcı butonu tekrar normal konumuna döndürür. Bu eleman bir aşırı akım rölesi veya bir durdurma butonu olabilir.

 

Şekil 1.13 Kalıcı tip butonun devrede gösterimi

1.2.2.2 Ani Temaslı Buton

Ani temaslı butona basıldığında, buton durumunu değiştirir. Serbest bırakıldığında, ani temaslı buton otomatik olarak normal konumuna döner.

1.3 ANAHTARLAR

En çok kullanılan kumanda elemanlarıdır. Anahtarların butondan farkı kalıcı tipte olmasıdır. Şekil 1.14’teki anahtar normalde açık konumda kullanılmaktadır.

 

Şekil 1.14 Anahtar simgesi

 

Şekil 1.15 Anahtar

 

Şekil 1.16 Anahtarın devrede gösterimi

1.4 LAMBALAR

Kumanda devrelerinde en çok kullanılan elemanlar sinyal lambalarıdır. Sinyal lambalarının gövdelerine neon veya akkor telli lamba takılır. Neon lambalar 220 V gibi yüksek gerilimli kumanda devrelerinde, ak kor telli lambalar ise 36 V gibi düşük gerilimli kumanda devrelerinde kullanılırlar.

 

Şekil 1.17 Lamba  simgesi

 

Şekil 1.18 Lamba

 

Şekil 1.19 Lambaların devrede gösterimi

Sinyal lambaları genellikle eletrik tablolarına bağlanacak şekilde yapılırlar. Bu bağlamada, sinyal lambasının gövdesi tablonun arka tarafında kalır. Sinyal lambasının bombeli ve renkli camı tablonun ön yüzünde bulunur.

1.5 SINIR ANAHTARLARI

Hareketli aygıtlarda bir hareketi durdurup başka bir hareketi başlatan ve aygıtın hareket eden elemanı tarafından çalıştırılan kumanda elemanına sınır anahtarı denir. Yapılarına göre sınır anahtarları, makaralı, pimli ve manyetik olmak üzere üç kısıma ayrılır. Şekil 1.20’de gerçek sınır anahtarları, Şekil 1.21’de de devre sembolleri görülmektedir.

 

Şekil 1.20 Sınır anahtarları

 

Şekil 1.21 Sınır anahtarı simgeleri

1.5.1 Makaralı Sınır Anahtarı

Aygıtın genellikle sabit kısmına bağlanırlar. Aygıtın hareketli kısmında bulunan bir çıkıntı, sınır anahtarının makarasına çarptığında, sınır anahtarının durumunu değiştirir. Sınır anahtarında bulunan kapalı kontaklar açılır, açık kontaklar kapanır. Sınır anahtarındaki bu durum değişikliği de aygıtı durdurur veya aygıtın çalışmasını sağlar.

 

Şekil 1.22 Makaralı sınır anahtarı

1.5.2 Pimli Sınır Anahtarı

Aygıtın genellikle aygıtın sabit kısmına bağlanırlar. Aygıtın hareketli kısmında bulunan bir çıkıntı sınır anahtarının pimine çarptığında, sınır anahtarının durum değiştirmesine neden olur. Sınır anahtarında bulunan kapalı kontaklar açılır, açık kontaklar kapanır. Kontakların durum değiştirmesi, aygıtı durdurur veya aygıtta yeni bir hareketi başlatır. Pimli sınır anahtarında pimin hareket kursunun uygun büyüklükte olması gerekir. Aksi takdirde aygıtın hareketli parçası, anahtarın kursu kadar olan mesafede duramaz.Hareketli parça sınır anahtarının parçalanmasına neden olur.

 

Şekil 1.22 Pimli sınır anahtarı

1.5.3 Manyetik  Sınır Anahtarı

Makaralı ve pimli sınır anahtarları mekanik bir hareketle çalışırlar. Yani mekanik bir hareket bu çeşit sınır anahtarlarının konumunu değiştirir. Manyetik sınır anahtarlarında ise bu durum farklıdır. Bu sınır anahtarı sabit mıknatıs ve kontak bloğu olmak üzere iki kısımdan oluşur. Kontak bloğu aygıtın sabit kısmına, sabit mıknatıs ise aygıtın hareketli kısmına bağlanır. Kontak bloğunda normalde açık ve normalde kapalı bir kontak vardır. Kontak parçalarından biri manyetik bir maddeden yapılır. Aygıt çalışırken zaman zaman kontak bloğu ile sabit mıknatıs karşı karşıya gelirler. Bu durumda sabit mıknatıs kontağın manyetik parçasını kendine doğru çeker. Kontağın açılmasına veya kapanmasına neden olur.

Manyetik anahtarlara Reed Kontak adı verilir. İçindeki hava alınmış şeffaf bit tüp içinde yerleştirilmiş demir - nikel alaşımlı kontaktan ibarettir. Akım geçişini kolaylaştırmak amacıyla cam tübün içine azot ve hidrojen karışımı gaz doldurulur.Kontakların mekanik titreşimlerden etkilenmemesi için reçineyle birlikte bir gövdeye yerleştirilmiştir. Temazsız algılama yaptıkları için yüksek hassasiyetli ve uzun ömürlüdür. Boyutları küçük ve anahtarlama hızları yüksektir (0.5 milisaniye).

 

Şekil 1.23 Manyetik sınır anahtarı

1.5.4  Çalışma Şekillerine Göre Sınır Anahtarları

Ani Temaslı ve Kalıcı Tip olmak üzere iki kısıma ayrılırlar. Sınır anahtarının durum değiştirmesine neden olan hareket ortadan kalktığında, ani temaslı sınır anahtarı hemen normal konumuna döner (yay nedeniyle). Halbuki bir hareket nedeniyle kalıcı tip sınır anahtarı durum değiştirirse, anahtar yeni konumnda kalır. Otomatik olarak normal konumuna dönmez. Ters yöndeki başka bir hareket kalıcı tip sınır anahtarını normal konumuna döndürür.

1.6  RÖLELER

Ufak güçteki elektromanyetik anahtarlara röle adı verilir. Röleler elektromıknatıs, palet ve kontaklar olmak üzere üç kısımdan oluşur. Elektromıknatıs, demir nüve ve üzerine sarılmış bobinden meydana gelir. Röle bobinleri hem doğru ve hem de alternatif akımda çalışır. Bobin doğru akıma bağlanacak ise demir nüve bir parçadan yapılır.

 

Şekil 1.24 Gerçek bir röle

Demir nüvenin ön yüzüne plastikten yapılmış bir pul konur. Bu pul, bobin akımı kesildikten sonra artık mıknatısıyet nedeniyle paletin demir nüveye yapışık kalmasını önler. Bobini alternatif akıma bağlanacak rölelerin demir nüveleri sac paketinden yapılır.

Demir nüvenin ön yüzünde açılan oyuğa bakırdan yapılmış bir halka geçirilir. Bu bakır halka konmazsa alternatif alan nedeniyle palet titreşim yapar. Kontaklar açılıp kapanır ve röle gürültülü çalışır.

 

Şekil 1.25 Rölenin iç yapısı

Rölelerde bir veya daha fazla sayıda normalde açık ve normalde kapalı kontak bulunur. Kontakların açılıp kapanmalarını, rölenin paleti sağlar. Bobin enerjilendiğinde, palet çekilir. Normalde kapalı kontaklar açılır, normalde açık kontaklar kapanır. Rölenin paletine bağlanmış olan bir yay kontakların nornal konumda kalmalarını sağlar. Kontakların yapımlarında gümüş, tungsten, palladyum metalleri ve bunların alaşımları kullanılır.

 

Şekil 1.26 Röleli devre örneği

Şekil 1.26’da verilen rölenin bobinine bir gerilim uygulandığında röle enerjilenir ve paletini çeker. Palet üzerinde bulunan 1-3 numaralı kontak açılır ve 1-2 numaralı kontak kapanır. Bobinin akımı kesildiğinde, röle üzerinde bulunan yay, paletin demir nüveden uzaklaşmasını sağlar. Bu durumda kapanmış olan 1-2 numaralı kontak açılır, açılmış olan 1-3 numaralı kontak kapanır. Röleler Şekil 1.27’deki gibi sembolize edilir.

 

Şekil 1.27 Röle ve kontaklarının simgeleri

1.7 KONTAKTÖRLER

Büyük güçteki elektromanyetik anahtarlara kontaktör adı verilir. Rölelerde olduğu gibi kontaktörler de elektromıknatıs, palet ve kontaklar olmak üzere üç kısımdan oluşur. Kontaktörler, bir ve üç fazlı motor, ısıtıcı, kaynak makinesi, trafo vb. alıcıların otomatik olarak kumanda edilmesinde kullanılır. Bu elemanların bobinlerinin gerilimleri DC ya da AC olarak 24 - 48 - 220 - 380 volt olabilmektedir.

 

Şekil 1.28 Kontaktörün iç yapısı

 

Şekil 1.29 Gerçek bir kontaktör

Şekil 1.28’de verilen kontaktörün bobinine bir gerilim uygulandığında kontaktör enerjilenir ve paletini çeker. Palet üzerinde bulunan 5-6 numaralı kontak ve 7-8 numaralı kontak açılır. 1-2 numaralı kontak ve 3-4 numaralı kontak kapanır. Bobinin akımı kesildiğinde, kontaktör üzerinde bulunan yay, paletin demir nüveden uzaklaşmasını sağlar. Bu durumda kapanmış olan 1-2 numaralı kontak ve 3-4 numaralı kontak açılır. Açılmış olan 5-6 numaralı kontak ve 7-8 numaralı kontak kapanır.

1.7.1  Kontaktörlerin Yapısı

1.7.1.1 Bobinler (Elektromıknatıs)

Bobin ve demir nüveden üretilmiş elemandır. Bobinde gerilim uygulandığında geçen akım manyetik alan oluşturarak mıknatısiyet meydana getirir. Kontaktör bobinleri de doğru veya alternatif akımla çalışırlar. Her iki akımla çalışacak kontaktörlerin demir nüveleri genellikle E şeklinde yapılırlar. Eğer bobin doğru akımla çalışacaksa E şeklindeki demir nüve, yumuşak demirden ve tek bir parça olarak yapılır.

 

Şekil 1.30 Enerjilenmiş kontaktör

Demir nüvenin dış bacaklarına plastikten yapılmış iki pul konur. Bu pullar, bobin akımı kesildikten sonra kalan artık mıknatısıyet nedeniyle paletin demir nüveye yapışık kalmasını önlerler. Bobini alternatif akıma bağlanacak olan kontaktörlerin E şeklindeki demir nüveleri, silisli saçların paketlenmesiyle yapılır. Böylece manyetik devrenin demir kayıpları en küçük değere indirilmiş olur. Bir kontaktör bobini alternatif gerilime bağlanırsa bu bobin alternatif manyetik alan yaratır. Frekansı 50 olan bir şebekede bu manyetik alan saniyede 100 kere 0 olur, 100 kere de maksimum değere ulaşır.
Manyetik alan maksimum olduğunda palet çekilir, sıfır olduğunda da palet bırakılır. Bu nedenle palet titreşir, kontaklar açılır ve kapanır, kontaktör çok gürültülü olarak çalışır. Bu sakıncayı gidermek için demir nüvenin dış bacaklarının ön yüzlerinde açılan oyuklara kalın bakır halkalar takılır. Bakır halkalar kullanılmazsa bir titreme oluşur.

Bir transformatörün sekonder sargısı gibi çalışan bu bakır halkaların her birinde gerilim indüklenir. Halkalar kısa devre edilmiş olduklarından, indüksiyon gerilimi halkalardan akım dolaştırır ve halkalar ek bir manyetik alan yaratır. Bu manyetik alan esas manyetik alandan 90 derece geride olduğundan, demir nüvedeki toplam manyetik alan hiçbir zaman sıfır olmaz. Bu nedenle palet devamlı çekik kalır.

 

Şekil 1.31 Kontaktörün devre üzerinde gösterimi

1.7.1.2  Palet

Kontaktör nüvesinin hareketli kısmına palet denir. Palet üzerine kontaklar monte edilmiştir. Kontaktörlerde kontakların açılıp kapanmaları palet ile sağlanır. Palet, yerçekimi kuvvetiyle veya bir yay aracılığı ile demir nüveden uzakta bulunur. Bobin enerjilendiğinde, palet demir nüve tarafından çekilir ve kontaklar durum değiştirir.

1.7.1.3  Kontaklar

Normalde açık ve normalde kapalı olmak üzere iki tip kontak vardır. Palet üzerine monte edilen hareketli kontakların bir kısmı kontaktör çalışmaz iken açık konumda, bir kısmı ise kapalı konumdadır. Kontaktör bobini enerjilendiğinde ise kontaklar durum değiştirir. Kontakların yapımında gümüşün; bakır, nikel, kadmiyum, demir, karbon, tungsten ve molibden'den yapılmış alaşımlar kullanılır. Bu alaşımlarda gümüşün sertliği artırılmış, sürtünme ve arktan dolayı meydana gelecek aşınmalar azaltılmıştır. Kontaktörde iki tip kontak mevcuttur. Bunlar :

§  Güç kontakları (Ana Kontaklar)

§  Kumanda kontakları (Yardımcı Kontaklar)

Güç kontakları yüksek akıma dayanıklı olup, motor vb. alıcıları çalıştırmak için kullanılır. Bu nedenle yapıları büyüktür. Kumanda kontakları ise, termik aşırı akım rölesi, zaman rölesi, ısı kontrol rölesi, mühürleme vb. gibi düzeneklerin çalıştırılmasında görev yapar. Bu nedenle yapıları küçüktür.

 

Şekil 1.32 Bir kontaktörün yapısı

Kısaca; ana kontaklar yük akımını, yardımcı kontaklar kumanda devresinin akımını taşırlar. Kontaktörün içinde normalde açık ve normalde kapalı olmak üzere değişik sayıda kontak bulunur. Bobin enerjisiz iken bazı kontaklar açık konumda bekler. Bobin enerjilendiğinde açık kontaklar kapalı, kapalı kontaklar ise açık hale gelir. Kontaktörde kontakların konumunun değişimi Tablo 1.1’de gösterilmiştir.

 

Tablo 1.1 Kontaktörde Kontakların Konum Değişimi

 

Şekil 1.33 Bir alternatif akım kontaktörünün devresi

Şekil 1.33’te, bir buton ve bir kontaktörle yapılan bağlantının şeması verilmiştir. Bu bağlantıda başlatma butonu açıkken, A kontaktörü enerjilenemez. Yani A kontaktörü normal konumunda bulunur. Bu durumda A1 kontağı açık ve L1 lambası sönüktür. A2 kontağı kapalı olduğunda, L2 lambası yanmaktadır. Başlatma butonuna basıldığında A kontaktörü enerjilenir. Normalde açık A1 kontağı kapanır ve L1 lambası yanar. Normalde kapalı A2 kontağı açılır, yanan L2 lambası söner. Başlatma butonu serbest bırakıldığında, A2 kontaktörünün enerjisi kesilir. Kontaklar normal konumlarına dönerler. L1 lambası söner ve L2 lambası yanar.

 

Şekil 1.34 Bir doğru akım kontaktörünün devresi

Şekil 1.34’te ise, başlatma butonuna basıldığında P ucundan gelen akım başlatma butonundan, A1 kontağı ve A bobininden geçerek devresini tamamlar. A kontaktörü veya rölesi, normal gerilimle enerjilenir. Normalde kapalı A1 kontağı açılır. R1 direnci A bobinine seri olarak bağlanır. R1 direncinde düşen gerilim nedeniyle A bobini daha küçük bir gerilimle çalışmaya devam eder. Çünkü A bobinine uygulanan bu küçük gerilim, paletin çekik kalmasını sağlar. A bobini enerjilenince, A2 kontağı kapanır ve L1 lambası yanar. A3 kontağı açılır, yanan L2 lambası söner.

1.8   AŞIRI AKIM RÖLELERİ

Aşırı akımların elektrik motorlarına vereceği zararları önlemek için kullanılan elemanlara, aşırı akım rölesi adı verilir. Elektrik devrelerinde kullanılan sigortalar da koruma görevi yaparlar. Çalışma karakteristikleri nedeniyle sigortalar elektrik motorlarını koruyamazlar.Yalnız hatları korurlar.

 

Şekil 1.35 Aşırı akım rölesi

Aşırı akım röleleri motorlara seri olarak bağlanırlar.Yani bir aşırı akım rölesinden, motorun şebekeden çektiği akım geçer. Çalışma anında motor akımı kısa bir süre için normal değerinin üzerine çıkarsa, bu aşırı akım motora zarar vermez. Aşırı akımın motordan sürekli olarak geçmesi, motor için sakınca yaratır. Çünkü uzun süre geçen aşırı akım, motorun sıcaklık derecesini yükseltir ve motoru yakar. Bu nedenle kısa süreli aşırı akımlarda aşırı akım rölesinin çalışıp motoru devreden çıkarmaması gerekir. Motorun yol alma anında kısa süre çektiği aşırı akım, bu duruma örnek olarak gösterilebilir. Böyle geçici durumlarda rölenin çalışması, geciktirici bir elemanla önlenir.

Herhangi bir nedenle motor fazla akım çektiğinde, aynı akım aşırı akım rölesinden de geçeceğinden, aşırı akım rölesinin kontağı açılır. Açılan kontak, motor kontaktörünün enerjisini keser. Böylece motor devreden çıkar ve yanmaktan korunmuş olur. Üzerinden geçen fazla akım nedeniyle atan bir aşırı akım rölesi, röle üzerinde bulunan butona elle basarak kurulur. Yalnız aşırı akım rölesini kurmadan önce rölenin atmasına neden olan arızayı gidermek gerekir. Bütün iş tezgahlarında kullanılan aşırı akım röleleri elle kurulurlar. Bazı ev tipi aygıtlarda örneğin buz dolaplarında kullanılan aşırı akım röleleri, devrenin açılmasınadan bir süre sonra otomatik olarak normal konumuna dönerler. Yani bu aşırı akım röleleri kendi kendilerine kurulurlar. Bazı aşırı akım röleleri de üzerlerinde bulunan bir vida aracılığı ile hem otomatik ve hem de elle kurma konumuna dönüştürülebilirler.

Bir fazlı alternatif akım veya doğru akım motor devrelerinde, aşırı akım rölesi yalnız bir iletken üzerine konur. Üç fazlı motor devrelerinde genellikle her faz için bir aşırı akım rölesi kullanılır. Bazen de yalnız iki fazın üzerine bir aşırı akım rölesi konur. Güç devresinde kullanılan aşırı akım röleleri daha çok bir kontağı kumanda ederler. Bazen de her aşırı akım rölesinin ayrı bir kontağı olur. Aşırı akım röleleri manyetik ve termik olmak üzere iki kısıma ayrılırlar.

1.8.1  Manyetik Aşırı Akım Rölesi

Motor akımının manyetik etkisiyle çalışan aşırı akım rölelerine, manyetik aşırı akım rölesi adı verilir. Bir manyetik aşırı akım rölesi elektromıknatıs, kontak ve geciktirici eleman olmak üzere üç kısımdan oluşur. Elektromıknatısın bobini güç devresinde motora seri olarak bağlanır. Yani bobinden motorun akımı geçer.

 

Şekil 1.36 Manyetik aşırı akım rölesi

Aşırı akım rölesinin normalde kapalı kontağı kumanda devresinin girişine konur. Bu kontak açıldığında, kumanda devresinin akımı kesilir ve motor durur. Kısa süreli aşırı akımlarda, örneğin motorun yol alma anında çektiği akımda,rölenin çalışıp kontağı açması, yağ dolu silindir içinde hareket eden bir pistonla önlenir.

Aşırı akım rölesinin bobininden normal değerinin üzerinde bir akım geçtiğinde, bobin demir nüveyi yukarıya doğru çeker. Silindir içnde bulunan piston nedeniyle, demir nüvenin hareketi yavaş olur. Bu nedenle aşırı akım rölesinin kontağı hemen açılamaz. Eğer bobinden geçen aşırı akım normal değerine düşmezse, bir süre sonra kontak açılır. Yani yağ dolu silindir içinde hareket eden pistondan oluşan geciktirici eleman, kısa süreli aşırı akımlarda, aşırı akım rölesinin çalışmasını engeller.

Manyetik aşırı akım rölelerinde akım ayarı, demir nüvenin bobine göre olan durumunu değiştirmekle yapılır. Örneğin bobin sabit tutulup demir nüve aşağıya kaydırılırsa, aşırı akım rölesinin devreyi açma akımı büyümüş olur. Devrelerde Şekil 1.37’deki gibi gösterilirler.

 

Şekil 1.37 Manyetik aşırı akım röle simgesi

1.8.1.1  Manyetik Aşırı Akım Rölelerinin Motor Devrelerinde Kullanılması

Manyetik aşırı akım röleleri üç fazlı motor devrelerine genellikle şekildeki gibi bağlanırlar. Bu bağlantıda üç faz üzerine konan üç manyetik aşırı akım rölesi, bir kapalı kontağı kumanda eder.

 

Şekil 1.38 Güç ve kumanda devresi

Çalışma devam ederken, motor herhangi bir nedenle uzun süre aşırı akım çekerse, manyetik aşırı akım rölesinin kapalı kontağı açılır. Çalışan kontaktör ve motor devreden çıkar.Böylece motor yanmaktan korunmuş olur.

1.8.2  Termik Aşırı Akım Rölesi

Motor akımının yarattığı ısının etkisiyle çalışan aşırı akım rölelerine, termik aşırı akım rölesi edı verilir. Termik aşırı akım rölelerinin endirekt ısıtmalı, direk ısıtmalı ve ergiyici alaşımlı olmak üzere üç çeşidi vardır. Termik aşırı akım röleleri devrelerde, Şekil 1.39’daki gibi gösterilirler.

 

Şekil 1.39 Termik aşırı akım röle simgesi

1.8.2.1  Endirekt Isıtmalı Termik Aşırı Akım Rölesi

Şekil 1.40’ta endirekt ısıtmalı termik aşırı akım rölesi görülmektedir. Endirekt ısıtmalı termik aşırı akım rölesi ısıtıcı, bimetal ve kontak olmak üzere üç kısımdan oluşur. Isıtıcı motora seri olarak bağlanır. Yani ısıtıcıdan motor akım geçer.Motora zarar verecek değerde bir akım sürekli olarak ısıtıcıdan geçerse, meydana gelen ısı bimetali sağa doğru büker. Bimetal kapalı olan kontağı açar. Açılan kontak kontaktörü ve dolayısıyla motoru devreden çıkarır. Böylece motor yanmaktan korunmuş olur.

Motor akımı kısa bir süre için normal değerinin üzerine çıkarsa, ısıtıcıdan geçen bu akım bimetali ısıtacak fırsatı bulamaz. Bu nedenle bimetal bükülmez ve kontak açılmaz. Motor için sakınca yaratmayan bu gibi durumlarda, ısının bimetale iletilmesindeki gecikme, aşırı akım rölesinin çalışmasını engeller.

 

Şekil 1.40 Endirekt ısıtmalı termik aşırı akım rölesi

1.8.2.2  Direkt Isıtmalı Termik Aşırı Akım Rölesi

Endirekt ısıtmalı termik aşırı akım rölelerinin akım değerleri büyüdükçe, ısıtıcı telin ve bimetalin ölçüleri de büyür. Büyük akımlar için yapılacak endirekt ısıtmalı termik aşırı akım röleleri kullanışlı ve ekonomik olmaz. Bu nedenle akım şiddeti büyük olan termik aşırı akım röleleri Şekil 1.41’de görüldüğü gibi direkt ısıtmalı olarak yapılırlar.

 

Şekil 1.41 Direkt ısıtmalı termik aşırı akım rölesi

Direkt ısıtmalı termik aşırı akım rölelerinde ısıtıcı eleman bulunmaz. Motor akımı bimetal üzerinden geçer. Bimetalin bükülmesine ve kontağın açılmasına neden olan ısı, bimetalin içinde doğar. Çok büyük akımlar için yapılacak direkt ısıtmalı termik aşırı akım röleleri de aynı nedenlerle kullanışlı ve ekonomik olmaz. Termik aşırı akım rölesi bu durumda bir akım trafosuyla veya şönt dirençle beraber kullanılır.

Gerek akım trafosu ve gerekse şönt direnç termik aşırı akım rölesinin çalışma akımını yani kapasitesini büyütür. Direkt ve endirekt ısıtmalı termik aşırı akım röleleri çeşitli akım şiddetleti için yapılırlar. Her termik aşırı akım rölesi iki akım değeri arasında çalışır. Aşırı akım rölesi, üzerinde bulunan bir ayar vidasıyla arzulanan motor akımına ayarlanır.

1.8.2.3  Ergiyici Alaşımlı Termik Aşırı Akım Rölesi

Şekil 1.42’de yapısı verilen ergiyici alaşımlı termik aşırı akım rölesi, ısıtıcı, küçük bir tüp ve kontak bloğundan oluşur. Isıtıcı elemanın sardığı tübün içinde, serbestçe dönebilen başka bir tüp daha vardır. İki tübün arasında düşük sıcaklıkta ergiyen bir alaşım bulunur. Ergiyici alaşım normal durumda iki tübü birbirine bağlar. Termik aşırı akım rölesinin ısıtıcısı motor devresine, normalde kapalı kontağı kumanda devresine seri olarak bağlanır. Herhangi bir nedenle motor aşırı akım çekerse, ısıtıcıdan geçen bu akım tüpteki alaşımı ergitir. Yay nedeniyle içteki tüp ve dişli döner.Normalde kapalı kontak açılır. Açılan kontak, kontaktörü ve motoru devreden çıkartır. Motor durunca ısıtıcıdan akım geçmez. Tüpleri birleştiren alaşım kısa bir süre içinde donar. Ergiyici alaşımlı termik aşırı akım röleleri çeşitli akım değerlerinde yapılırlar. Bu aşırı akım rölelerinde akım ayarı yapılmaz.

 

Şekil 1.42 Ergiyici alaşımlı termik aşırı akım rölesi

1.8.2.4  Termik Aşırı Akım Rölelerinin Motor Devrelerinde Kullanımı

Termik aşırı akım röleleri üç fazlı motor devrelerinde genellikle Şekil 1.43’teki gibi bağlanırlar. Bu bağlantıda her faz üzerine bir termik aşırı akım rölesi konur. Üç termik aşırı akım rölesi bir kapalı kontağı kumanda eder. Motor çalışırken herhangi bir nedenle uzun süre akım çekerse, termik aşırı akım rölesinin kapalı kontağı açılır. Çalışan kontaktör ve motor devreden çıkar. Böylece motor yanmaktan korunmuş olur.

 

Şekil 1.43 Termik aşırı akım rölelerinin güç ve kumanda devrelerinde gösterimi

1.9   ZAMAN RÖLELERİ

Bobini enerjilendikten veya bobinin enerjisi kesildikten belirli bir süre sonra, kontakları durum değiştiren rölelere, zaman rölesi adı verilir. Çalışma şekillerine göre zaman röleleri şu şekilde sınıflandırılabilir;

§  Çekmede Gecikmeli (Düz) Zaman Rölesi

§  Düşmede Gecikmeli (Ters) Zaman Rölesi

İç yapısına göre zaman röleleri ise şu şekilde sınıflandırılabilir;

§  Pistonlu Zaman Rölesi

§  Motorlu Zaman Rölesi

§  Doğru Akım Zaman Rölesi

§  Termik Zaman Rölesi

§  Termistörlü Zaman Rölesi

 

Şekil 1.44 Zaman rölesi

1.9.1  Çalışma Şekillerine Göre Zaman Röleleri

1.9.1.1  Düz Zaman Rölesi

Bobini enerjilendikten belli bir süre sonra gecikme yapan, yani kontakları konum değiştiren rölelerdir. Bobin enerjisi kesildiğinde kontaklar eski haline dönerler. Şekil 1.45’te de rölelerin devrelerde ne şekilde sembolize edildiği görülmektedir.

 

Şekil 1.45 Düz zaman rölesi ve kontaklarının simgeleri

1.9.1.2  Ters Zaman Rölesi

Bobinin enerjisi kesildikten belli bir süre sonra gecikme yapan zaman rölesidir. Enerji verildikten sonra hemen kontaklar durum değişdirir. Enerji kesildikten bir süre sonra iletime izin verilir.

 

Şekil 1.46 Ters zaman rölesi ve kontaklarının simgeleri

1.9.2  İç Yapılarına Göre Zaman Röleleri

1.9.2.1  Pistonlu Zaman Rölesi

Zaman gecikmesi bir pistonla sağlanan zaman rölelerine, pistonlu zaman rölesi adı verilir. Düz zaman rölelerinde bobine gerilim verdiğimizde karşısındaki paleti çeker. Şekildeki gibi 1-2 ve 3-4 numaralı kontaklar hemen, 5-6 ve 7-8 numaralı kontaklar zaman gecikmesiyle şekil değiştirirler. Bu gecikmeyi sağlayan bir piston ya da bunun içinde bulunan yağ veya havadır.

 

Şekil 1.46 Pistonlu düz zaman rölesi

 

Şekil 1.47 Pistonlu ters zaman rölesi

Pistonlu ters zaman rölesi, bobinin gerilimi kesildikten sonra gecikme yapar. Bobine gerilim verdiğimizde kontakların tamamı şekil değiştirir. Bobin gerilimi kesildiğinde, şekilden de görüldüğü gibi 1-2 ve 3-4 numaralı kontaklar hemen, 5-6 ve 7-8 numaralı kontaklar gecikmeli olarak şekil değiştirir.

 

Şekil 1.48 Düz zaman rölesi ve kontaklarının sembolleri

 

Şekil 1.49 Ters zaman rölesi ve kontaklarının sembolleri

1.9.2.2  Motorlu Zaman Rölesi

Motorlu zaman rölelerinde genel olarak senkron motor kullanılır. Motor miline bağlı bir dizi dişliden ve kontaklardan ibarettir. Motor çalışmaya başladığında, P pimi vasıtasıyla belli zaman sonunda, kapalı kontaklar açılır, açık kontaklar kapanır ve motor frenlenir. Bu anda aynı zamanda dişliler bir yay vasıtasıyla ters yönde kurulur. Motorun akımı kesildiğinde dişliler, dolayısıyla kontaklar eski durumuna gelir. Motorun frenlenmesi esnasında geçen akım, motor sargıları için bir sakınca teşkil etmez.

 

Şekil 1.50 Ters zaman rölesi ve kontaklarının sembolleri

1.9.2.3  Doğru Akım Zaman Rölesi

Bakır halkalı, bakır halkasız ve kondansatörlü diye üçe ayrılır. Şekil 1.51’deki gibi gösterilirler.

 

Şekil 1.51 Doğru akım zaman rölesi ve kontaklarının sembolleri

Bakır halkasız zaman rölesinde bobin, gerilim verdiğimizde karşısındaki paleti çeker, kontaklar şekil değiştirir. Bu durum S anahtarına basana kadar devam eder. S anahtarını kapattığımızda bobinin meydana getirdiği magnetik alan süratle 0'a doğru düşmek ister. Değişik alanın içinde kalan bobinde bir gerilim indüklenir ve bu gerilim bobinden akım dolaştırır. (Kısa devre akımı) Dolayısıyla S anahtarına bastıktan belli bir süre sonra kontaklar şekil değiştirir. Bu tip rölelerle 1.5 sn'lik bir gecikme sağlanabilir. Ters zaman rölesi olarak çalışırlar.

 

Şekil 1.52 Bakır halkasız zaman rölesi

Bakır halkalı zaman rölesi, bir elektromıknatıs, palet, bakır halka ve kontaklardan ibarettir.Bobin enerjilendiğinde paleti çeker ve kontaklar şekil değiştirir. Röle akımı kesildiğinde, magnetik alan 0' doğru düşer. Değişken alan içinde kalan bakır halkada bir gerilim indüklenir. Bu gerilim, bakır halkadan bir akım dolaştırır. Bobinin akımı kesildiği halde bakır halkadan dolaşan akımdan dolayı, kontaktör gecikmeli olarak şekil değiştirir. Bu tip zaman röleleriyle 1 sn gecikme sağlanabilir. Ters zaman rölesi olarak çalışırlar.

 

Şekil 1.53 Bakır halkalı zaman rölesi

Kondansatörlü zaman rölesi, bir doğru akım rölesiyle bir kondansatörün parelel bağlanmasından oluşur. Kondansatörlü zaman rölesi şebekeye bağlandığında röle enerjilenir. Normalde kapalı (2-3) nolu kontak açılır. Normalde açık (1-3) nolu kontak kapanır. Kondansatör kısa bir süre zaman içinde üreteç gerilimine şarj olur. Kondansatörlü zaman rölesi şebekeden ayrıldığında, röle bobininden geçen üreteç akımı sıfır olur. Fakat şarj olmuş kondansatör bobin üzerinden boşalmaya başlar.Kondansatörün deşarj akımı sıfır olmadan palet açılır. Kontaklar normal konumlarına dönerler. Böylece kondansatörlü zaman rölesinin şebekeden ayrıldığı an ile kontakların normal konumlarına döndükleri an arasında, bir gecikme sağlanmış olur.

 

Şekil 1.54 Kondansatörlü zaman rölesi

Yani kondansatörlü zaman rölesi ters zaman rölesi olarak görev yapar. Kondansatörlü zaman rölelerinde zaman ayarı yapmak oldukça güçtür.Bununla beraber (C1) kondansatörünün değerini değiştirmekle, kontakların durum değiştirme zamanı ayarlanabilir. Örneğin (C1) kondansatörünün değeri büyütülürse, kontaklar normal konumlarına dönünceye kadar geçecek süre artar. Fakat bu yöntem sık sık başvurulacak bir yol değildir. Ters zaman rölesi olarak çalışırlar.

1.9.2.4  Termik Zaman Rölesi

Zaman gecikmesinin ısı ile sağlanan zaman rölelerine, termik zaman rölesi adı verilir. Bir termik zaman rölesi ısıtıcı, bimetal ve kontak olmak üzere üç parçadan oluşur.

 

Şekil 1.55 Termik zaman rölesi

Isıtıcı eleman seramik tüp üzerine sarılır. Isıtıcının çekeceği akım (R1) direnciyle sınırlanır. Bimetal seramikten yapılmış tüp içinde bulunur. Isıtıcı şebekeye bağlandığında, ısıtıcının sıcaklık derecesi yükselmeye başlar. Seramik tüpte doğan ısı bimetale geçer. Bimetalin sıcaklık derecesi yavaş yavaş yükselir. Bimetal ısındıkça sağa doğru eğilmek ister. Mekaniki bir düzen bimetalin yavaş hareketini engeller. Bimetalde doğan eğilme kuvveti uygun bir değere yükseldiğinde, bimetal ani olarak sağa doğru hareket eder. Normalde kapalı (1-3) nolu kontak açılır. Normalde açık (2-3) nollu kontak kapanır.Böylece ısıtıcının devreye bağlanmasından bir süre sonra kontaklar durum değiştirmiş olur. Şekil 1.56’daki gibi gösterilirler.

 

Şekil 1.56 Termik zaman rölesi ve kontaklarının simgeleri

1.9.2.5  Termistörlü Zaman Rölesi

Bir termistörün ve bir rölenin seri bağlanmasından oluşan zaman rölesine, termistörlü zaman rölesi adı verilir. Termistör, direnci sıcaklıkla değişen bir elemandır. Bütün maddelerin direnci sıcaklıkla değişir. Fakat direncin sıcaklıkla değişimi termistörlerde çok fazladır.

 

Şekil 1.57 Termistörlü zaman rölesi

Uygulamada iki çeşit termistör kullanılır. Direncin sıcaklıkla değişme katsayısı bunlardan birinde pozitif (PTC), diğerinde negatiftir (NTC). Negatif katsayılı termistörde sıcaklık derecesi arttıkça, termistör direnci azalır. Katsayısı pozitif olan termistörün sıcaklık derecesi artarsa, bu termistörün direnci de artar.

 

Şekil 1.58 Termistörlü zaman rölesi ve kontaklarının simgeleri

Şekil 1.57’deki termistörlü zaman rölesinde,direncin sıcaklıkla değişme katsayısı negatif olan bir termistör kullanılmıştır. Bu devrede (A) anahtarı kapatıldığında, devreden çok küçük bir akım geçer. Bu akım, termistörün bir parça ısınmasına neden olur.Isınan termistörün direnci azalır ve devreden geçen akım büyür. Akımın artması termistörü daha çok ısıtır. Isınan termistörün direnci daha çok düşer. Sonunda devreden geçen akımın değeri, rölenin çekme akımına ulaşır. Röle paletini çeker ve kontaklar durum değiştirir. Böylece zaman rölesinin devreye bağlanışından bir süre sonra, kontakların durum değiştirmesi sağlanmış olur. Palet çekildikten sonra, rölenin empedansı büyür ve devre akımı azalır. Termistördeki sıcaklık yükselmesi sona erer, devre kararlı çalışmaya başlar. Devredeki (A) anahtarı açıldığında, kontaklar ani olarak normal konumlarına dönerler.

Termistörlü zaman röleleri düz zaman rölesi olarak çalışır. Termistörlü zaman rölelerinde zaman ayarı yapmak oldukça güçtür. Devreden geçen akımın değişmesi, kontakların durum değiştirme zamanını değiştirse de, bu uygun bir yol değildir.

1.10  VALFLER

Elektrik enerjisiyle çalışan elektromanyetik musluklara veya vanalara, solenoid valf adı verilir. Solenoid valfler, hava, gaz, su, yağ ve buhar gibi akışkanlar için kullanılırlar. Akışkanlara ait borular, solenoid valfe vidalanarak veya rakor somunla bağlanırlar.

 

Şekil 1.59 Valf

Bir solenoid valf elektromıknatıs ve musluk olmak üzere iki kısımdan oluşur. Elektromıknatısın bobinleri düşük veya yüksek gerilimde, doğru veya alternatif akımda çalışacak şekilde çok çeşitli olarak yapılırlar.

Bobin içinde bulunan demir nüve, valfin diyaframıyla mekaniksel olarak bağlıdır. Demir nüve ve dolayısıyla diyafram bir yay ile aşağıya doğru bastırıldığından, solenoid valf normal durumda kapalı olur. 
Solenoid valfin bobini şebekeye bağlandığında, demir nüve ve diyafram yukarıya çekilir. Valf açılır ve akışkan sol taraftaki girişten sağ taraftaki çıkışa geçmiş olur.

 

Şekil 1.60 Valfin simgesi

Solenoid valfler yalnız bir yön için normal olarak çalışırlar. Solenoid valfin sol tarafı çıkış ve sağ tarafı giriş olarak kullanılırsa, solenoid valf normal görevini yapamaz. Çünkü sağ taraftan gelen akışkan, bobinin enerjilenmediği normal durumda da yay basıncını yenerek diyaframı yukarıya iter ve valfin açılmasına neden olur.

Solenoid valfler iki ve üç yollu olmak üzere iki şekilde yapılırlar. Şekil 1.61’te görülen solenoid valf normal durumda kapalıdır. Bobin enerjilendiğinde, solenoid valf açılır. Valfler Şekil 1.60’deki gibi sembolize edilirler.

 

Şekil 1.61 Valfin iç yapısı

1.11  TERMOSTATLAR

Katı, sıvı ve gazların sıcalık derecelerinin sabit tutulmasıyla kullanılan kumanda elemanlarına, termostat adı verilir. Termostatlar elektrikli ısıtıcı veya soğutucuların bulundukları yerlerde kullanılırlar.

 

Şekil 1.62 Termostat

Bir termostatın genellikle bimetal ve kontaklar olmak üzere iki kısımı vardır. Isıtıldığında genleşme katsayıları farklı olan iki ince metal plaka birbirine yapıştırılarak bimetal elde edilir. İki metal birbirine yapışık olduğundan çok uzayan metal kısa kalan metalin üzerine doğru eğilir. Termostadın bimetali ısındığında Şekil 1.63’te görüldüğü gibi bimetal sağa doğru bükülür.Bimetalin bu hareketi termostadda bir kontağı açar, başka bir kontağı kapatır.

 

Şekil 1.63 Sıcak ve soğuk konumda bimetal

Isı değişimlerini mekanik harekete çevirme, yalnız bimetal ile yapılmaz. Şekil 1.64’te görüldüğü gibi yüksek genleşme katsayılı sıvı ile doldurulmuş bir körük de aynı görevi yapar. Körük ince ve uzun boruyla küçük bir depoya bağlıdır. Bu elemanlar ve kontaklar termostadı oluşturur. Termostadın küçük deposu sıcaklığın denetleneceği yere konur.Küçük deponun bulunduğu yerdeki sıcaklık derecesi yükseldiğinde, küçük depodaki sıvı genleşir. Körüğün diyaframı yukarıya doğru genleşir. Termostadın kapalı kontağı açılır, açık kontağı kapanır. Soğumada da bu olayın tersi olur.İnce boru ve ucundaki küçük depo nedeniyle aşağıdaki termostada, kuyruklu termostat adı verilir.

 

Şekil 1.64 Körük ve kontağın durumları

Bazı termostatlarda metal kontaklar yerine civa tüplü kontaklar, düz bimetal yerine sarmal bimetal kullanılır. Cam tübün sağ ucu aşağıda olduğunda, civa bu tarafta bulunur ve civa kontak parçalarını birleştirir. Tübün sağ ucu yukarıya kalktığında, civa diğer uca kayar. Kontak parçalarının arası açılır. Böyle bir termostadın bulunduğu yerde sıcalık düşerse, sarmal bimetal toplanır. Termostat kontağı kapanmışsa açılır, açılmışsa kapanır.

 

Şekil 1.65 Civa tüplü kontaklar ve sarmal bimetal

Kullanılış yerlerine göre termostatlar oda, su ve katı madde termostatları olmak üzere üç kısıma ayrılırlar.

1.11.1    Oda Termostatları

Oda sıcaklığının sabit tutulmasında kullanılan termostatlara denilir. Şekil 1.66’da iki sinyal lambalı bir oda termostadının yapısı verilmiştir. Ortamın sıcaklık derecesi termostadın ayarlı olduğu sıcaklık derecesinin altına düştüğünde, termostadın sol taraftaki ana kontağı kapanır ve sağ taraftaki yardımcı kontağı açılır. Bu durumda ısıtıcı şebekeye bağlanır ve ortam ısınmaya başlar. Aynı anda (L1) sinyal lambası da yanar.

 

Şekil 1.66 İki sinyal lambalı oda termostadı

Ortam ısındıkça, bimetal sağa doğru kıvrılmak ister. Fakat sabit mıknatıs bimetali hemen bırakmaz.Bimetalde uygun değerde mekanik gerilme doğunca, bimetal sabit mıknatıstan ani olarak kurtulur. Kontaklar süratli olarak durum değiştirirler.Bu durumda ısıtıcı şebekeden ayrılır. (L1) sinyal lambası söner, (L2) sinyal lambası yanar. Isıtıcı devreden çıkınca, ortam soğumaya başlar.
Ortamın sıcaklık derecesi termostadın ayarlı olduğu sıcaklık derecesinin altına düştüğünde, bimetal sola doğru kıvrılmaya başlar. Biraz sonra sabit mıknatıs bimetali kendine çeker.
Kontaklar yine ani olarak durum değiştirirler. Isıtıcı tekrar şebekeye bağlanır. (L2) sinyal lambası söner, (L1) sinyal lambası yanar. Termostatdaki sabit mıknatıs kontakların hızlı açılıp kapanmalarını sağladığı halde, önemli sakınca yaratır.

Dokümanın Tamamı için Tıklayın...


Ekleyen:Ümit SERT
Kaynak:(Alıntıdır)
Aradığınız Dokümanı Bulamadıysanız, Farklı Araştırmalar Yapmak İstiyorsanız Site İçi Arama Yapabilirsiniz!

Ödev ve Araştırmalarınız için www.arsivbelge.com Sitesinde Kaynak Arayın:


Ödev ve Araştırmalarınız için Arama Yapın:
     Benzer Dokümanları İnceleyin
Elektronik Devre Elemanları ve Sembolleri(18299)

Elektrik Devresi(2343)

          Tanıtım Yazıları
      
Türkçe İtalyanca ve Almanca Cümle Çevirisi İçin Birimçevir Sitesi

Esenyurt, Beylikdüzü ve Kartal Bölgelerinde Satılık Daire İlanları

Belge Çevirisi

Tanıtım Yazılarınızı Yayınlamak İçin Tıklayın



Diğer Dökümanlarımızı görmek için: www.arsivbelge.com tıklayın.          

Siz de Yorum Yapmak İstiyorsanız Sayfanın Altındaki Formu Kullanarak Yorum Yazabilirsiniz!

Yorum Yaz          
Öncelikle Yandaki İşlemin Sonucunu Yazın: İşlemin Sonucunu Kutucuğa Yazınız!
Ad Soyad:
          
Yorumunuz site yönetimi tarafından onaylandıktan sonra yayınlanacaktır!